5.8 Fundamental Theorem of Algebra

 Practice Tasks

I. Concepts and Procedures

1. Find the two square roots of each complex number by creating and solving polynomial equations.
a) $z=15-8 i$
b) $z=8-6 i$
c) $z=-3+4 i$
d) $z=-5-12 i$
e) $z=21-20 i$
f) $z=16-30 i$
g) $z=i$

II. Problem Solving

A Pythagorean triple is a set of three positive integers a, b, and c such that $a^{2}+b^{2}=c^{2}$. Thus, these integers can be the lengths of the sides of a right triangle.

1. Show algebraically that for positive integers p and q, if

$$
\begin{aligned}
a & =p^{2}-q^{2} \\
b & =2 p q \\
c & =p^{2}+q^{2}
\end{aligned}
$$

then $a^{2}+b^{2}=c^{2}$
2. Select two integers p and q, use the formulas in Problem 8 to find a, b, and c, and then show those numbers satisfy the equation $a^{2}+b^{2}=c^{2}$.
3. Use the formulas from Problem 8, and find values for p and q that give the following famous triples.
a. $(3,4,5)$
b. $(5,12,13)$
c. $(7,24,25)$
d. $(9,40,41)$
4. Is it possible to write the Pythagorean triple $(6,8,10)$ in the form $a=p^{2}-q^{2}, b=2 p q$, $c=p^{2}+q^{2}$ for some integers p and q ? Verify your answer.
5. Choose your favorite Pythagorean triple (a, b, c) that has a and b sharing only 1 as a common factor, for example $(3,4,5),(5,12,13)$, or $(7,24,25), \ldots$. Find the square of the length of a square root of $a+b i$; that is, find $|p+q i|^{2}$, where $p+q i$ is a square root of $a+b i$. What do you observe?
III. Modeling

1. Write a function of $4^{\text {th }}$ degree with an imaginary zero and an irrational zero.
